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I. SAT

SAT and SMT (SAT modulo theory) aim to find a satisfi-
able instance of given constraints. SAT computes a boolean
instance of constraints in a conjunctive normal form (CNF) of
propositional logic, and SMT accepts constraints described in
background theory, such as arithmetic.

This tutorial consists of Part 1: SAT and Part 2: SMT.
Part 1 focuses on SAT solver, and we will overview de-
facto-standard algorithm designs, such as non-chronological
back tracking with implication graphs, conflict driven learning,
and two watched literals [1]. Then, we investigate how to
encode problems into CNF. Examples are taken from puzzles.
Although puzzles are problems on bounded domains, there is
certain hierarchy of difficulties, corresponding to the logical
hierarchy of problems. Our examples are SUDOKU [2],
Logic pictures [3], and Slitherlink [4]12, which correspond
to descriptions in CNF, general propositional logic, and higher
order logic, respectively. As conversion techniques to efficient
CNFs, a popular Tseitin conversion and two special techniques
(for the latter two, respectively) are introduced.

II. SMT

When a constraint described in a background theory is given,
SMT separates case analysis and satisfiability checking in the
background theory. Linear arithmetic (Presburger arithmetic) is
one of most popular background theory for SMT, and mostly
it is implemented with the simplex method [1]. We first briefly
see it, and then we focus on SMT for non-linear arithmetic.

QF_NIA, non-linear arithmetic on integers, is known as
Hilbert’s 10th problem and undecidable. Practical solutions
bound the range for search and apply either of the following.

• bit-blasting. Most of fast implementations of SMTs in
QF_NIA category uses it. UCLID [5] further boost it by
applying abstractions.

• linearization. Barcelogic [6] instantiates one of arguments
in multiplication by all possible integers in a given bound.
Then, non-linear arithmetic is reduced to Presburger
arithmetic, which is solved by backend SMTs, e.g., Yices.

1http://www.nikoli.co.jp/en
2http://bach.istc.kobe-u.ac.jp/sugar/puzzles/

Our extreme focus of this tutorial is QF_NRA category,
after general introduction on SAT and SMT. QF_NRA, non-
linear constraints on real numbers, is known to be decidable.
It was firstly shown by Tarski in 1930’s [7] and later an
efficient (but still DEXPTIME) QE-CAD (quantifier elimination
by cylindrical algebraic decomposition) was proposed [8].
In symbolic computation community, QE-CAD has been
implemented as Mathematica, Reduce/Redlog, QEPCAD-B,
and Maple/SyNRAC. Recently, SMT activity starts to merge
these techniques. For instance, RAHD applies different versions
of QE-CAD implementations (QEPCAD-B, Reduce/Redlog)
as a backend, and Z3 4.3 (equivalently, nlsat in [9]) includes
its own QE-CAD implementation. Earlier versions of Z3 (e.g.,
Z3 3.1) and SMT-RAT applied Virtual Substitution, which is a
special case of QE-CAD for small degrees.

Apart from QE-CAD, recent SMTs in QF_NRA category
also apply approximations. For instance, interval constraint
propagation is an over-approximation, and Bit-blasting, Lin-
earization, testing are regarded as under-approximations.

• Interval Constraint Propagation (ICP). RSOLVER [10]
and iSAT [11] apply input range decomposition and
classical interval arithmetic. iSAT refines its search by
binary interval decomposition. raSAT [12] applied Affine
intervals and combines testing to boost satisfiability check-
ing. It uses more sophisticated interval decomposition
guided by Affine interval computation and testing results.

• Bit-blasting. MiniSMT [13] describes rational numbers as
pairs of integers and restricts possible irrational numbers
appearing in instances. For instance,

√
2 is introduced as

α2−2 = 0 with α ∈ [1.3, 1.4] before solving satisfiability.
Then, it bounds the range of search for bit-blasting.

• Linearization. CORD [14] uses CORDIC (Coordinate
Rotation Digital Computer), which reduces non-linear
constraints to linear constraints under given precision.

• δ-complete procedure. dReal [15] is based on the delta
complete procedure, which decides SAT and weak-UNSAT
of inequalities. raSAT shares a similar idea.

Finally, applications of QF_NRA are briefly mentioned, e.g.,

• Roundoff error analysis [16], [17],
• Linear invariant generation [18] by Farkas’s lemma, and
• Polynomial and matrix interpretation in automatic termi-

nation detection [19]
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